General Certificate of Education (A-level) June 2013

Mathematics

MFP1

(Specification 6360)

Further Pure 1

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk
Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Лor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0$)$ accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1	$\left.\begin{array}{l} \left(x_{2}=\right) 10-\frac{\left(10^{3}-10^{2}+4 \times 10-900\right)}{\left(3 \times 10^{2}-2 \times 10+4\right)} \\ \left(=10-\frac{1000-100+40-900}{300-20+4}\right) \\ =10-\frac{40}{284}=10-0.1408 \ldots \end{array}\right) .$	B1 B1 B1	3	$10-\frac{\mathrm{f}(10)}{\mathrm{f}^{\prime}(10)}$ with a correct numerical expression or value PI for $\mathrm{f}(10)$. $10-\frac{\mathrm{f}(10)}{\mathrm{f}^{\prime}(10)}$ with a correct numerical expression or value PI for $\mathrm{f}^{\prime}(10)$. Must be 9.859
	Total		3	
$2(a)(\mathbf{i})$ (ii) (b)	$\left.\left.\begin{array}{l} \mathbf{A}-\mathbf{B}=\left[\begin{array}{cc} p-3 & 1 \\ 2 & p-3 \end{array}\right] \\ \mathbf{A B}=\left[\begin{array}{ll} p & 2 \\ 4 & p \end{array}\right]\left[\begin{array}{ll} 3 & 1 \\ 2 & 3 \end{array}\right]=\left[\begin{array}{cc} 3 p+4 & p+6 \\ 12+2 p & 4+3 p \end{array}\right] \\ \mathbf{A}-\mathbf{B}+\mathbf{A B}=\left[\begin{array}{cc} 4 p+1 & p+7 \\ 14+2 p & 1+4 p \end{array}\right] \\ \mathbf{A}-\mathbf{B}+\mathbf{A B}=k \mathbf{I}=k\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] \\ (p+7=0,14+2 p=0 \end{array}\right]\right) p=-7 .$	B1 M1 A1 B1F B1 B1 B1	1	Finding AB and at least 2 elements correct CSO Only ft if all matrices are 2 by 2 PI by later correct work I used as or equated to $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ at some stage $p=-7$ provided it gives the relevant two zero elements CSO Either - 27 (no earlier errors) for B1 OR $k=-27$ with either $\left[\begin{array}{cc}-27 & 0 \\ 0 & -27\end{array}\right]$ or $27\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$ or $-27\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ seen before (no earlier errors) for B1
	Total		7	

Q	Solution	Marks	Total	Comments
6(a)	$\begin{aligned} & \alpha+\beta=-\frac{3}{2} \\ & \alpha \beta=-3 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	$\begin{aligned} & \mathrm{OE} \\ & \mathrm{OE} \end{aligned}$
(b)	$\alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)$	M1		Using correct identity for $\alpha^{3}+\beta^{3}$ in terms of $\alpha+\beta$ and $\alpha \beta$.
(c)	$\begin{aligned} & =\left(-\frac{3}{2}\right)^{3}-3(-3)(-3 / 2) \\ & =-\frac{27}{8}-\frac{27}{2}=-\frac{135}{8} \end{aligned}$	A1F A1	3	with ft /or correct substitution CSO AG. Correct evaluation of each of $(-1.5)^{3}$ and $-3(-3)(-1.5)$ must be seen before the printed answer is stated
	$\begin{aligned} \text { Sum } & =\alpha+\frac{\alpha}{\beta^{2}}+\beta+\frac{\beta}{\alpha^{2}} \\ & =\alpha+\beta+\frac{\alpha^{3}+\beta^{3}}{(\alpha \beta)^{2}}=-\frac{3}{2}+\frac{-135 / 8}{9} \end{aligned}$	M1		Writing $\alpha+\frac{\alpha}{\beta^{2}}+\beta+\frac{\beta}{\alpha^{2}}$ in a suitable form with $\mathrm{ft} /$ or correct substitution
	$\begin{aligned} & \text { Sum }=-\frac{27}{8} \\ & \text { Product }=\alpha \beta+\frac{\beta}{\alpha}+\frac{\alpha}{\beta}+\frac{1}{\alpha \beta} \end{aligned}$	A1		PI OE exact value eg -3.375 (A0 if $\alpha \beta=3$ used to get $(\alpha \beta)^{2}=9$)
	$\begin{gather*} =\alpha \beta+\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}+\frac{1}{\alpha \beta} \quad\left({ }^{*}\right) \tag{*}\\ \text { Now } \alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta \\ \left(=\frac{9}{4}+6\right) \end{gather*}$	M1		(*) OE with correct identity for $\alpha^{2}+\beta^{2}$ used in (c). Subst of values not required but PI by correct value of Product
	$\text { Product }=-3-\frac{1}{3}\left(\frac{9}{4}+6\right)-\frac{1}{3}=-\frac{73}{12}$	A1		PI OE exact value
	$x^{2}-S x+P(=0)$	M1		Using correct general form of LHS of eqn with ft substitution of c's S and P values.
	Eqn is $24 x^{2}+81 x-146=0$	A1	6	OE but integer coefficients and ' $=0$ ' needed
	Total		11	

Q	Solution	Marks	Total	Comments
7(a)	$\begin{aligned} & \mathrm{f}(x)=4 x^{3}-x-540000 \\ & \mathrm{f}(51)=-9447 \quad(<0) ; \quad \mathrm{f}(52)=22380(>0) \end{aligned}$ Since sign change (and f continuous), $51<\alpha<52$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	$f(51)$ and $f(52)$ both considered All values and working correct plus relevant concluding statement involving ' 51 ' and ' 52 '.
(b)(i)	$\begin{aligned} S_{n} & =\sum_{r=1}^{n}(2 r-1)^{2}=\sum 4 r^{2}-\sum 4 r+\sum 1 \\ & =4 \frac{n}{6}(n+1)(2 n+1)-4 \frac{n}{2}(n+1)+\sum_{r=1}^{n} 1 \\ & =4 \frac{n}{6}(n+1)(2 n+1)-4 \frac{n}{2}(n+1)+n \\ & =\frac{n}{3}\left[2\left(2 n^{2}+3 n+1\right)-6(n+1)+3\right]=\frac{n}{3}\left[4 n^{2}-1\right] \end{aligned}$	M1		Splitting up the sum into separate sums. PI by ml line below or better
		m1 B1 A1		Substitution of correct formulae from FB for the two summations B1 for $\sum_{r=1}^{n} 1=n$ stated or used
		A1	5	CSO
(ii)	$\left(6 S_{n}=2 n\left[4 n^{2}-1\right]\right)=2 n(2 n-1)(2 n+1)$	B1		Terms in any order
	$(2 n-1), 2 n$ and $(2 n+1)$ are consecutive integers	E1	2	Terms must be identified and statement 'consecutive integers'
(c)	$S_{n}=1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2} \quad$ ie sum of squares of first n odd numbers so need least N such that $S_{N}>180000$			
	$S_{52}=\frac{52}{3}\left[4 \times 52^{2}-1\right]=187460 \text { and } S_{51}=176851$	M1		Either $\frac{n}{3}\left[4 n^{2}-1\right]=180000$ or $2 N(2 N-1)(2 N+1)=1080000$ or S_{52} and S_{51} both attempted (or $=$ replaced by $>$ or by \geq)
	Smallest value of N is 52	A1	2	CSO Fully and correctly justified. NMS $N=52$ scores $0 / 2$
	Total		11	

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline 8(a) \& $$
\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]
$$ \& M1

A1 \& 2 \& Matrix in form $\left[\begin{array}{ll}\lambda & 0 \\ 0 & \mu\end{array}\right]$, where $\lambda \neq 0, \mu \neq 0$ and $\lambda \neq \mu$

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]
$$

\hline \multirow[t]{2}{*}{(b)(i)} \& \multirow[t]{2}{*}{| $y=\sqrt{3} x=\tan 60^{\circ} x \quad\left[\begin{array}{cc} \cos 120^{\circ} & \sin 120^{\circ} \\ \sin 120^{\circ} & -\cos 120^{\circ} \end{array}\right]$ |
| :--- |
| Required matrix is $\left[\begin{array}{cc}-\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right]$ |} \& M1 \& \& | $\left[\begin{array}{cc} \cos 120 & \sin 120 \\ \sin 120 & -\cos 120 \end{array}\right] \text { PI }$ |
| :--- |
| For M mark, condone dec approx 0.86 or 0.87 or better in place of $\sin 120^{\circ}$ |

\hline \& \& A1 \& 2 \& OE but must be in exact surd form.

\hline (ii) \& $$
\left[\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]=
$$ \& M1 \& \& Attempt to multiply c's (b)(i) 2by2 matrix and c's (a) 2by 2 matrix in correct order.

\hline \& $$
=\left[\begin{array}{cc}
-\frac{1}{2} & \frac{3 \sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{3}{2}
\end{array}\right]
$$ \& A1 \& 2 \& OE but must be in exact surd form.

\hline \& Total \& \& 6 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 9(a) \& \begin{tabular}{l}
(HA) \(y=1\) \\
(VA)
\[
\begin{aligned}
\& x^{2}-2 x-3=0 \quad(x-3)(x+1)=0 \\
\& x=-1 \text { and } x=3
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1
\end{tabular} \& 3 \& \begin{tabular}{l}
\[
y=1 \quad \mathrm{OE} \text { eqn }
\] \\
PI OE eg use of quadratic formula \\
Both needed OE eqn(s)
\end{tabular} \\
\hline \multirow[t]{3}{*}{(b)(i)

(ii)} \& $$
\begin{aligned}
& k=\frac{x^{2}-2 x+1}{x^{2}-2 x-3} \Rightarrow k x^{2}-2 k x-3 k=x^{2}-2 x+1 \\
& k x^{2}-2 k x-3 k-x^{2}+2 x-1=0 \\
& (k-1) x^{2}-2(k-1) x-(3 k+1)=0
\end{aligned}
$$ \& B1 \& 1 \& AG Must see the two stages, correct elimination of fraction and a correct rearrangement to $\ldots=0$, along with correct elimination of brackets before printed answer is stated.

\hline \& Discriminant $b^{2}-4 a c\left\{4(k-1)^{2}+4(k-1)(1+3 k)\right\}$ \& M1 \& \& $b^{2}-4 a c, \mathrm{OE}$, in terms of k; condoning one minor error in substitution.

\hline \& Line intersects curve $\Rightarrow b^{2}-4 a c \geq 0$

$$
\begin{aligned}
& \Rightarrow 4(k-1)^{2}+4(k-1)(1+3 k) \geq 0 \\
& \Rightarrow 4(k-1)[k-1+1+3 k] \geq 0, \quad 16 k(k-1) \geq 0
\end{aligned}
$$

$$
\text { ie } k^{2}-k \geq 0
$$ \& A1

A1 \& 3 \& | A correct inequality where k is the only unknown |
| :--- |
| CSO AG Must be convinced |

\hline \multirow[t]{3}{*}{(iii)} \& | $k^{2}-k \geq 0, \quad k(k-1) \geq 0$ |
| :--- |
| $k \leq 0, \quad k \geq 1 \quad$ Critical values $k=0, \quad(k=1)$ |
| $k \neq 1$ since there is no point on the curve where $y=1$ $\left(x^{2}-2 x-3 \neq x^{2}-2 x+1\right)$ | \& B1

E1 \& \& | For $k=0$ either as an equation or inequality. |
| :--- |
| OE Valid explanation, with no accuracy errors, to discount $k=1$ |

\hline \& $$
k=0,-x^{2}+2 x-1=0 \quad \text { or } \quad y=0, \quad x^{2}-2 x+1=0
$$ \& M1 \& \& OE

\hline \& (Only one) stationary point (and its coordinates are) $(1,0)$ \& A1 \& 4 \& 'stationary' with either $(1,0)$ or $\{x=1, y=0\}$

\hline \multirow[t]{3}{*}{(c)} \& \& B1 \& \& Curve with three distinct branches

\hline \& \& B1 \& \& Branch between VAs, correct shape, no part of the branch above the x-axis, only intersection with y-axis at a point below the origin, and its max pt on the positive x-axis

\hline \& \& B1 \& 3 \& Fully correct curve drawn with each branch correctly approaching its relevant asymptotes

\hline \& Total \& \& 14 \&

\hline \& TOTAL \& \& 75 \&

\hline
\end{tabular}

